Relationship between alpha(1)-adrenergic receptor-induced contraction and extracellular signal-regulated kinase activation in the bovine inferior alveolar artery.
نویسندگان
چکیده
The endogenous adrenergic agonists norepinephrine (NE) and epinephrine regulate vascular tone by stimulating alpha(1)-adrenergic receptors (ARs) on smooth muscle cells to cause contraction. In addition, alpha(1)-ARs also couple to growth factor pathways, through stimulation of mitogen-activated protein kinases (MAPKs). MAPKs are a family of serine-threonine kinases that include extracellular signal-regulated kinase (ERK) and a variety of other kinases that are able to activate transcription factors when stimulated. We examined alpha(1)-AR stimulation of contraction and ERK activation in the bovine inferior alveolar artery (BIAA), using in vitro contraction studies and Western blotting. Using antagonists selective for individual adrenergic receptor types, we found that only alpha(1)-ARs were coupled to ERK activation and contraction. NE stimulated contraction (EC(50) = 11 microM) and ERK activation (EC(50) = 21 microM) with similar potency. Using alpha(1)-AR subtype-selective antagonists, we identified the alpha(1)-AR subtypes coupled to each response. Affinity values for alpha(1)-AR subtype-selective antagonists were consistent with alpha(1A)-AR-mediated contraction. In contrast, simultaneous treatment with concentrations of these antagonists selective for each alpha(1)-AR subtype (alpha(1A)-, alpha(1B)-, and alpha(1D)-AR) was required to inhibit ERK activation, suggesting that all three alpha(1)-ARs activate ERK in BIAA. Transmural electrical stimulation of BIAA segments resulted in activation of ERK, which was inhibited by the alpha(1)-AR-selective antagonist BE 2254 (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone). These data suggest that in an intact artery, NE released from sympathetic nerves stimulates alpha(1)-ARs to cause contraction and ERK activation, and that redundancy among subtypes exists for alpha(1)-AR activation of ERK.
منابع مشابه
Up-regulation of alpha1A-adrenoceptors in rat mesenteric artery involves intracellular signal pathways.
The aim of the present study was to investigate if there is an altered expression of alpha-adrenoceptors during organ culture of rat mesenteric artery segments by using a sensitive pharmacological method and molecular biological techniques. Noradrenalin (NA) induced contraction via alpha1-adrenoceptors. The contraction and alpha1A-adrenoceptor mRNA levels were elevated during organ culture. Tra...
متن کاملRegulation of ERK phosphorylation in differentiated arterial muscle of rabbits.
Extracellular signal-regulated kinases (ERK) and mitogen-activated protein (MAP) kinases participate in cell signaling, regulating cell growth. In differentiated cells, the role ERK plays is less well known. This study quantified the degree of basal and stimulated ERK phosphorylation and contraction in freshly isolated arteries. The level of basal ERK phosphorylation was identical in preloaded ...
متن کاملS100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways
Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...
متن کاملα1A-Adrenergic Receptor Induces Activation of Extracellular Signal-Regulated Kinase 1/2 through Endocytic Pathway
G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A)-adrenergic receptor (α(1A)-AR)-induced activation of extracellular signal-regulated kinase 1/2 ...
متن کاملAmyloid-β peptides activate α1-adrenergic cardiovascular receptors.
Alzheimer disease features amyloid-β (Aβ) peptide deposition in brain and blood vessels and is associated with hypertension. Aβ peptide can cause vasoconstriction and endothelial dysfunction. We observed that Aβ peptides exert a chronotropic effect in neonatal cardiomyocytes, similar to α1-adrenergic receptor autoantibodies that we described earlier. Recently, it was shown that α1-adrenergic re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 303 1 شماره
صفحات -
تاریخ انتشار 2002